PromptsVault AI is thinking...
Searching the best prompts from our community
ChatGPTMidjourneyClaude
Searching the best prompts from our community
Click to view expert tips
Define data structure clearly
Specify JSON format, CSV columns, or data schemas
Mention specific libraries
PyTorch, TensorFlow, Scikit-learn for targeted solutions
Clarify theory vs. production
Specify if you need concepts or deployment-ready code
Implement comprehensive model evaluation and validation frameworks with proper metrics and statistical analysis. Classification metrics: 1. Accuracy: correct predictions / total predictions, baseline comparison, stratified sampling. 2. Precision: true positives / (true positives + false positives), minimize false alarms. 3. Recall (Sensitivity): true positives / (true positives + false negatives), capture all positive cases. 4. F1-score: harmonic mean of precision and recall, balanced metric for imbalanced datasets. Regression metrics: 1. Mean Absolute Error (MAE): average absolute differences, interpretable units, robust to outliers. 2. Root Mean Square Error (RMSE): penalizes large errors, same units as target variable. 3. R² (coefficient of determination): explained variance, 1.0 = perfect fit, negative = worse than mean. Advanced evaluation: 1. ROC-AUC: area under ROC curve, threshold-independent, >0.9 excellent performance. 2. Precision-Recall curve: imbalanced datasets, focus on positive class performance. 3. Confusion matrix: detailed error analysis, class-specific performance, misclassification patterns. Cross-validation strategies: 1. Stratified K-fold: maintain class distribution, k=5 or k=10, repeated CV for stability. 2. Time series validation: walk-forward, expanding window, respect temporal dependencies. 3. Leave-one-out: small datasets, computationally expensive, unbiased estimates. Statistical significance: 1. Paired t-test: compare model performance, statistical significance p<0.05. 2. Bootstrap sampling: confidence intervals, performance stability assessment. 3. McNemar's test: classifier comparison, statistical hypothesis testing. Business metrics integration: ROI calculation, cost-benefit analysis, domain-specific targets, A/B testing framework for production validation.