PromptsVault AI is thinking...
Searching the best prompts from our community
ChatGPTMidjourneyClaude
Searching the best prompts from our community
Click to view expert tips
Define data structure clearly
Specify JSON format, CSV columns, or data schemas
Mention specific libraries
PyTorch, TensorFlow, Scikit-learn for targeted solutions
Clarify theory vs. production
Specify if you need concepts or deployment-ready code
Master systematic model selection and optimization for machine learning projects with performance evaluation frameworks. Model selection process: 1. Problem definition: classification vs. regression, supervised vs. unsupervised learning. 2. Data assessment: sample size (minimum 1000 for deep learning), feature count, missing values analysis. 3. Baseline models: linear regression, logistic regression, random forest for initial benchmarks. Algorithm comparison: 1. Tree-based: Random Forest (high interpretability), XGBoost (competition winner), LightGBM (fast training). 2. Linear models: Ridge/Lasso (regularization), ElasticNet (feature selection), SGD (large datasets). 3. Neural networks: MLPs (tabular data), CNNs (images), RNNs/Transformers (sequences). Hyperparameter optimization: 1. Grid search: exhaustive parameter combinations, computationally expensive but thorough. 2. Random search: efficient for high-dimensional spaces, 60% less computation time. 3. Bayesian optimization: intelligent search using Gaussian processes, tools like Optuna, Hyperopt. Cross-validation strategies: 1. K-fold CV: k=5 for small datasets, k=10 for larger datasets, stratified for imbalanced data. 2. Time series CV: walk-forward validation, expanding window, respect temporal order. Performance metrics: accuracy (>85% target), precision/recall (F1 >0.8), AUC-ROC (>0.9 excellent), confusion matrix analysis for class-specific performance.