PromptsVault AI is thinking...
Searching the best prompts from our community
ChatGPTMidjourneyClaude
Searching the best prompts from our community
Click to view expert tips
Define data structure clearly
Specify JSON format, CSV columns, or data schemas
Mention specific libraries
PyTorch, TensorFlow, Scikit-learn for targeted solutions
Clarify theory vs. production
Specify if you need concepts or deployment-ready code
Master generative AI and large language model development, fine-tuning, and deployment for various applications. LLM architecture fundamentals: 1. Transformer architecture: self-attention mechanism, multi-head attention, positional encoding. 2. Model scaling: parameter count (GPT-3: 175B), training data (tokens), computational requirements. 3. Architecture variants: encoder-only (BERT), decoder-only (GPT), encoder-decoder (T5). Pre-training strategies: 1. Data preparation: web crawling, deduplication, quality filtering, tokenization (BPE, SentencePiece). 2. Training objectives: next token prediction, masked language modeling, contrastive learning. 3. Infrastructure: distributed training, gradient accumulation, mixed precision (FP16/BF16). Fine-tuning approaches: 1. Supervised fine-tuning: task-specific datasets, learning rate 5e-5 to 1e-4, batch size 8-32. 2. Parameter-efficient fine-tuning: LoRA (Low-Rank Adaptation), adapters, prompt tuning. 3. Reinforcement Learning from Human Feedback (RLHF): reward modeling, PPO training. Prompt engineering: 1. Zero-shot prompting: task description without examples, clear instruction formatting. 2. Few-shot learning: 1-5 examples, in-context learning, demonstration selection strategies. 3. Chain-of-thought: step-by-step reasoning, intermediate steps, complex problem solving. Evaluation methods: 1. Perplexity: language modeling capability, lower is better, domain-specific evaluation. 2. BLEU score: text generation quality, n-gram overlap, reference comparison. 3. Human evaluation: quality, relevance, safety assessment, inter-rater reliability. Deployment considerations: inference optimization, model quantization, caching strategies, latency <1000ms target, cost optimization through batching.